SatanCloud

A Journey into the Privacy and Security Risks of a Cloud Computing

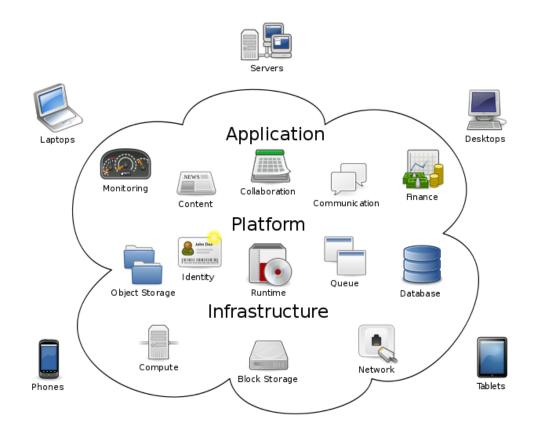
Marco Balduzzi, MSc./Ph.D. • Senior Threat Researcher

Who am I?

- From Bergamo (Italy)
 - MSc. in Computer Engineering
- Télécom ParisTech (France)
 - Ph.D. in Applied System Security
- 10+ years experience in IT Security
- Engineer and consultant for different international firms
 - Senior Threat Researcher @ TrendMicro
- Co-founder of BGLug, Applied UniLab, (ex) SPINE Group, free software developer, hacking groups

http://www.iseclab.org/people/embyte

Roadmap


- Introduction
 - Cloud Computing
 - laaS and Amazon EC2
- Security Problem definition
- SatanCloud
 - Automated analysis & testing
- Experiments
 - Findings
- Lessons learned
- Conclusions

What is Cloud Computing?

 The delivery of computing as a service rather than a **product**, whereby shared resources, software, and information are provided to computers and other devices as a utility over a network (Internet). [wikipedia]

Cloud, an old new concept

- Parallel, distributed and grid computing have been around for a while
 - Scientists, governments, international organizations, military
 - Urban planning, weather forecasts, economic modeling, etc...
- Now, cloud computing is a commodity
 - Who does not use the cloud nowadays?
- Ready-to-go services

3 Models of Cloud Services

- Software as a Service (SaaS): software
 - e.g. CRM, email, games, virtual desktops
 - Google Apps, Salesforce CRM, Dropbox
- Platform as a Service (PaaS): computing or solution platform
 - e.g. programming language execution environments, databases, web servers
 - Microsoft's Azure, Google's AppEngine.
- Infrastructure as a Service (laaS): computers (physical/virtual), storage, firewalls or networks
 - Amazon EC2, Rackspace Cloud, Joyent Smart Machines

Infrastructure as a Service

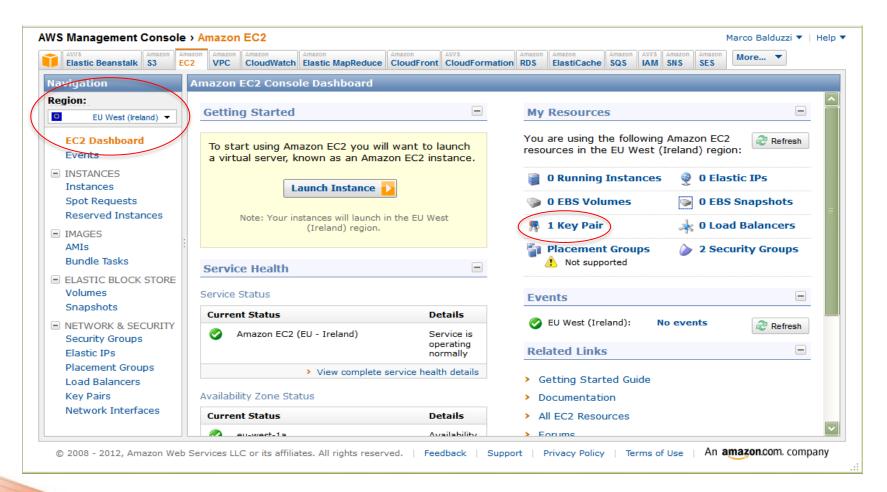
- Remote access to virtualized server images on an hourly/monthly basis
- Amazon's Elastic Compute Cloud (EC2)
- Competitors (Jason Read @ CloudHarmony.com)
 - Storm on Demand: \$100/mo
 - Voxel VoxCLOUD: \$144/mo
 - Linode VPS: \$160/mo
 - ThePlanet Cloud Servers: \$169/mo
 - Zerigo: \$173/mo
 - Rackspace Cloud: \$175/mo
 - NewServers Bare Metal Cloud: \$180/mo
 - SoftLayer CloudLayer Computing: \$199/mo
 - Terremark vCloud Express: \$202/mo
 - ReliaCloud: \$230/mo
 - GoGrid: \$232/mo
 - Joyent Smart Machines: \$500/mo

Amazon EC2 [1/3]

- Infrastructure-as-a-Service platform
- Users can rent <u>A</u>mazon <u>M</u>achine <u>I</u>mages (called <u>AMIs</u>) on an hourly basis
 - Provided an online catalog
 - Web interface and APIs
- Users can publish AMIs to the Cloud
 - I. Amazon itself
 - 2. individuals
 - 3. third-party companies (can charge extra costs via Amazon DevPay)

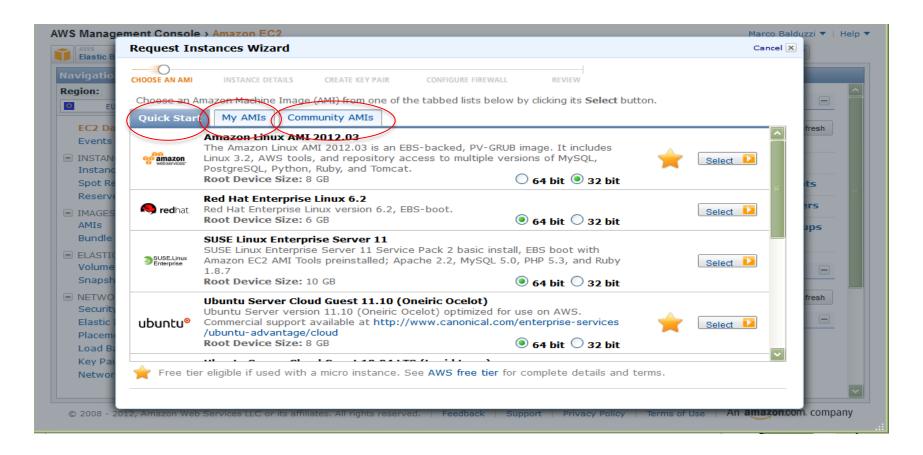
Amazon EC2 [2/3]

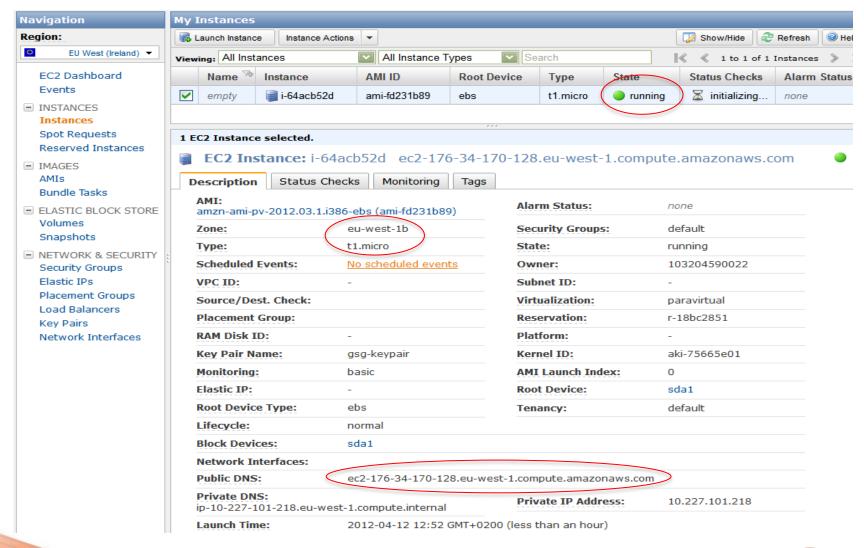
- AMI can be built from...
 - ... a live system
 - a virtual machine image (ISO)
 - ... or another AMI (by copying the file system contents to S3)
- To start an Image, the user configures:
 - Credentials
 - Resources: processing, memory, IO performance
 - Region: US East, US West, Europe, Singapore, Tokyo
 - Inbound firewall
- Three pricing models
 - Fixed pricing
 - Subscription
 - Spot instances (price changes according to load)


Amazon EC2 [3/3]

- When an AMI is initiated
 - Hostname is announced
 - e.g. ec2-IP-region.computer.amazonaws.com
 - Accessible via SSH (port 22) or Remote Desktop (port 3389)
- Amazon does not care about securing the image
 - The maintenance is completely under the responsibility of the end user
- User has root privileges, needs to administer system

Usage example [1/3]


Amazon Web Services (AWS) Management Console


Usage example [2/3]

Launch an instance

Usage example [3/3]

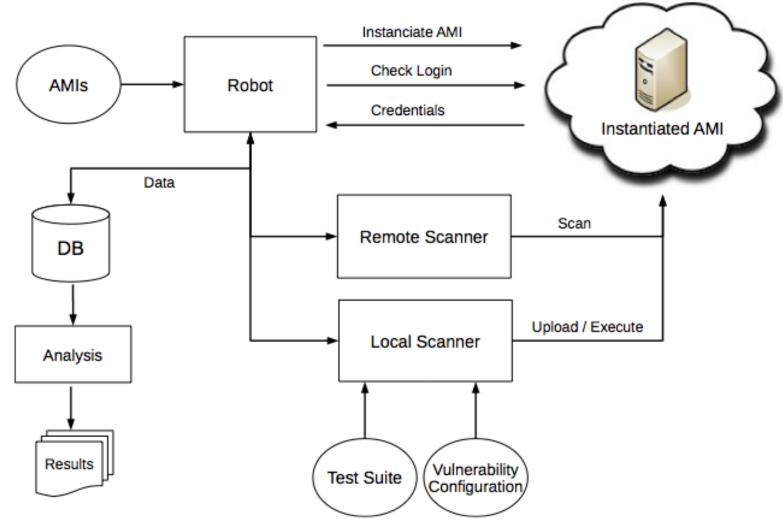
Problem definition

- A popular approach is to create, publish and share server images with other users
- Trust model cloud provider & user is well-defined
 - i.e., Amazon is not going to hurt you ☺
- What about image provider & user?
 - Users can create and share images too... blurry
- Are there any threats associated with renting images from the public catalogs of cloud service providers?
- To which extend?

The Threats Landscape

- Securing the Image against external attacks
- Securing the Image against malicious image providers
- Sanitizing the Image to protect the privacy of the image provider

Large-scale experiment


- Automated system for security analysis and measurement
- All public server images provided by Amazon in its four data centers
 - US East, US West, Europe and Asia
- Over a period of 7 months

- Successfully scanned 5,303 AMIs
 - Linux and Windows

SatanCloud

Remote Scanner

It collects information over network

- List the open ports and services (NMap is used)
- The installed web server
- Web modules (name, version)
- Web application (index page)

Utility? Wait the end of the talk...

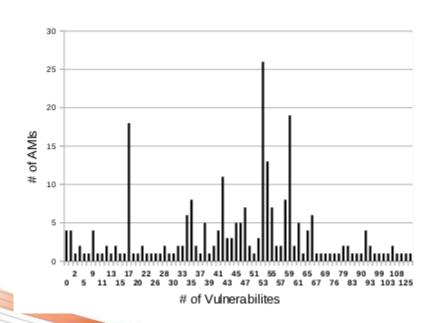
Local Scanner, two tasks

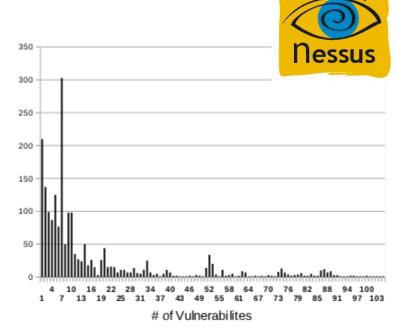
• 1. Analyze the AMI for known **vulnerabilities** using the Nessus tool (locally – i.e., precise)

- 2. Upload to AMI and remote execute a test suite
- Self-extracting archive that contains 24 tests grouped in 4 categories:
 - General system information, log files and data collection
 - Network shared directories, open sockets, running servers
 - Privacy history files, file-system analysis, forgotten data
 - Security vulnerable applications, rootkit & malware detection, hidden processes

Overview of Tests We Performed

OS	Details	Type	Tests
Linux + Windows	-	General	System information
Linux	_	General	Logs/emails/WWW archive
Windows + Linux	_	General	Processes and File-system
Linux	lsmod	General	Loaded modules
Linux	_	General	Installed packages
Windows + Linux	Interfaces, routes	Network	General Network Infos
Windows + Linux	-	Network	Listening and Established Sockets
Windows + Linux	Enabled Shares	Network	Network Shares
Windows + Linux	Common Shells + Browsers	Privacy	History Files
Linux	Private / Public Keys	Privacy	SSH Private Keys
Linux	(Only on X AMIs)	Privacy	Undeleted Data
Linux	-	Privacy	Last logins
Linux	MySQL and PostgresSQL	Privacy/Security	SQL Credentials
Windows + Linux	Enabled Logins	Privacy/Security	Password Credentials
Linux	Backdoor access	Security	SSH Public Keys
Linux	Rootkit	Security	$\operatorname{Chkrootkit}$
Linux	Rootkit	Security	RootkitHunter
Windows	Rootkit	Security	RootkitRevealer
Linux	General Security Issues	Security	Lynis Auditing Tool
Windows + Linux	Antivirus	Security	Clam AV
Linux	Processes/Sockets Hiding	Security	Unhide
Windows	Processes Hiding	Security	PsList
Linux	-	Security	Sudoers Configuration


Findings



Software vulnerabilities [1/2]

- Nessus performed a precise, local scan on the actual software installed
 - Windows, Linux
- We limited the analysis to the **critical** vulnerabilities only

Software vulnerabilities [2/2]

98% Windows, 58% Linux AMIs come with critical vulnerabilities

AMIs	Windows	Linux
with vulnerabilities <= 2 years	145	1,197
with vulnerabilities <= 3 years	38	364
Avg. # vulnerabilities / AMI	46	

 87 Debian AMIs come with the now notorious SSH/ OpenSSL vulnerability discovered in May 2008 (i.e., CVE-2008-0166)

Security Risks - Malware

- We used ClamAV to scan systems (850,000 signatures)
- We discovered two infected AMIs, both Windows-based
- Trojan-Spy 50112: key logger, process monitor, and data leakage from saved files
- Trojan.Agent 173287: browser spyware (IE BHO)
 - Cannot manually confirm the presence
 - The machine got infected during our test experiment?
 - Ih of unpatched execution with no firewall

Security Risks - Unsolicited connections

- Plenty of outgoing connections
- Hard to evaluate each of them
- Two Linux AMIs configured to send the logs to a remote host
- syslog-NG

Leftover Credentials

- When user rents AMI, public key needs to be provided
 - Amazon adds this to authorized_keys for ssh access
- Security Risk: Users could leave key behind and make image public (turn to backdoor)
 - Same problem if a user sets password and publishes image

	US East	US West	Europe	Asia	Total
AMIs with leftover credentials	34.75%	8.35%	9.80%	6.32% (21.80%
With password	67	10	22	2	101
With SSH keys	794	53	86	32	965
With both	71	6	9	4	90
Superuser privileges	783	57	105	26	971
User privileges	149	12	12	12	185

Privacy Risk: Passwords can be cracked and used by 3rd parties

Privacy risks

- If the image contains sensitive information, these would be available to anybody who is renting the AMI
- Not only customers have a potential risk, but providers too

- Accessing credentials, e.g.
 - To login into other servers
 - To start instances "for free"
- Information such as browser history can be used for deanonymization, or social engineering

"Forgotten" keys

- We searched the images for forgotten keys
 - id_dsa and id_rsa for SSH keys
 - -pk-[0-9A-Z]*.pem and cert-[0-9A-Z]*.pem for AWS API keys
- 56 private SSH keys used to login to other machine
 - 54 of which where **not** protected with a passphrase
 - IP of other machines available in the logs :)
- We discovered 67 unprotected AWS API keys
 - Can immediately be used to start images on the cloud at the expense of the key's owner

Shell history

- Shell histories: credentials (usernames and passwords)
 - Automatically inspected .history, .bash_history, .sh_history
 - 869 files stored interesting information, 158,354 lines of command history

Finding	# Credentials	# Local	# Remote
Amazon RDS	4	0	4
Dynamic DNS	1	0	1
Database Monitoring	7	6	\$ mysql -u user -p password -h hos
MySQL	58	45	13
Web Applications	3	2	I
VNC	1	1	0
Total	74	54	20

• So if I delete my data then I am fine ...?

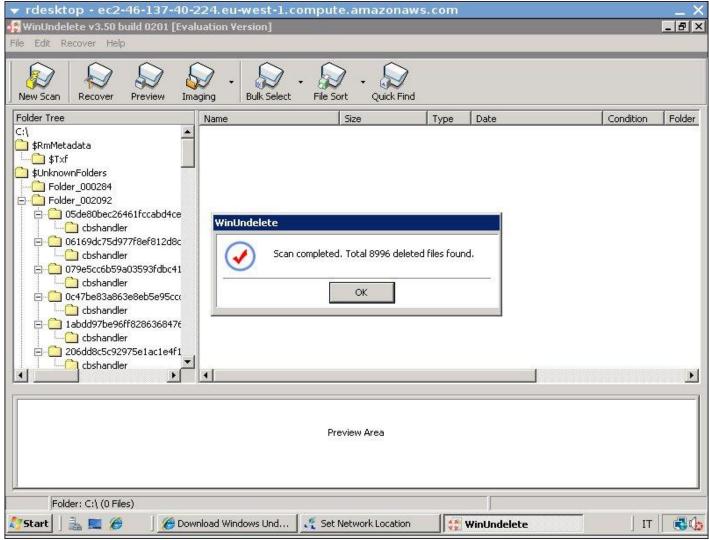
Recovery of deleted files [1/3]

AMIs can be bundled using different methods

Method	Level	Vulnerable
ec2-bundle-vol	File-System	No
ec2-bundle-image	Block	Yes
From AMI snapshot	Block	Yes
From VMWare	Block	Yes

- Block-based bundling methods are vulnerable to file undelete attacks
 - Even if provider deletes files, attacker might still access them
- We randomly selected 1,100 Linux AMIs in 4 regions
- We used extundelete to automatically inspect the AMI's filesystem

Recovery of deleted files [2/3]


- Were undelete 28GB of data
- We recover files for 98% of the AMIs (6 to 40,000 file per AMI).

Type	#
Home files (/home, /root)	33,011
Images (min. $800x600$)	1,085
Microsoft Office documents	336
Amazon AWS certificates and access keys	293
SSH private keys	232
PGP/GPG private keys	151
PDF documents	141
Password file (/etc/shadow)	106

• Even an official Amazon image (private SSH key!)

Recovery of deleted files [3/3]

Matching AMIs to Running Instances

- Suppose attacker hides an ssh key, how does he locate the server?
- Given a running instance on the Amazon EC2 cloud, how to find the corresponding AMI?
- Perfect solution: SSH host key
 - Should be regenerated upon
 - But that is not always the case...
- Approximate solutions
 - Service Banners
 - Web

Experiment

- We scanned the Amazon IP range (ARIN, RIPE, LAPNIC)
- 653,401 IPs
- Collected info for 233K running instances

Technique	Instances	Perfect Match		Set of 50 Candidates
SSH	130,580	1.65%	6.79%	9.01%
Services	203,563	3.45%	14.91%	31.20%
Web	125,554	4.42%	25.21%	43.74%

Feedbacks and collaboration

- During our experiments we were in contact with the AmazonWS Security Team
- I Passwords and public keys
 - Contacted all the clients, released a public bulletin, changed the status of vulnerable AMIs to private
- 2 Leftover data
 - Released (within 5 days) a tutorial to help customers share public images in a secure manner
- 3 Recovering deleted data
 - Verified our finding (immediately)
 - AMIs examination (work in progress)

Lessons Learned

- Prepare your own image
- Otherwise:
 - Immediately update the software (with the firewall up)
 - Regenerate the SSH host key
 - Delete any user, password, and SSH key
 - Check the configuration files of the services you plan to run
 - Check for suspicious connections
 - ... did I tell you to prepare your own image?
- If you plan to release a public image
 - Use a file-based bundle mechanism (or shred any sensitive files)
 - Delete logs and history files

References

- Amazon
 - How to share and use public AMIs in a secure manner
 - Reminder about safely sharing and using public AMIs
- M. Balduzzi, J. Zaddach, D. Balzarotti, E. Kirda, S. Loureiro
 - A Security Analysis of Amazon's Elastic Compute Cloud Service. In Proceedings of the the 11th edition of the Computer Security track at the 27th ACM Symposium on Applied Computing

Thanks!

